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Application of the Decision Tree Method 
for Differentiating Human Groups

One of the tasks of modern biological anthropology is to develop a system that could objectively classify humanity on 
the basis of measurements. Here, the decision tree algorithm was chosen to create a classifi cation of groups. The method 
helps to evaluate the differentiating power of specifi c dimensions for separating samples and to assess the composition 
of clusters at each step of the analysis. Standard cranial measurements were used, and the entropy index was chosen as 
a heterogeneity measure. Classifi cation units were 39 ethno-territorial groups from 13 major regions of the Old World. 
At the fi rst step, differentiation is made between broad-faced and narrow-faced groups, demonstrating the classifi catory 
value of this trait. The fi rst cluster includes only Mongoloids, admixed Southern Siberian populations, and Ainu. The 
second cluster is heterogeneous, but its further subdivision is more in line with the traditional classifi cation. Traits 
underlying the branching of the tree may be the same in different branches, evidencing their taxonomic importance. 
Capabilities of the decision tree method proved suffi cient to construct a system largely similar to the traditional one. 
Certain traits separate large groups of populations, while others are effi cient at the regional level. The method, therefore, 
can be recommended as a supplementary tool at the intraspecifi c level.
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ANTHROPOLOGY AND PALEOGENETICS

Introduction

Humanity classifi cations at various taxonomic levels 
could be developed owing to the high phenotypic 
polymorphism of the Homo sapiens species. 
Nowadays, numerous classification systems exist, 
each based on a different set of anthropological 
traits. The differences between underlying principles 
and selected fundamental and subordinate features 
are the key to such plethora and wide diversity of 
classifi cations. The main and basic requirement to such 
systems is their phylogenetic signifi cance. This means 
that the structure devised must refl ect the common 

ancestry of the entities in question. Nevertheless, this 
approach presents intractable challenges. The level 
of typological similarity is not necessarily indicative 
of kinship; therefore, in the construction of many 
classifications, both the geographical distribution 
of traits and the intrapopulation diversity of these 
traits are taken into account. This is reflected in 
the system of intragroup correlation coefficients. 
The features selection, as well as the interpretation 
of morphological similarity with consideration of 
the historical development of populations, trigger 
humanity classifi cations subjectivity, even at the level 
of major population groups.
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The advancement of mathematical techniques 
has given rise to a new avenue in the pursuit of 
objective classifi cation—numerical taxonomy. This 
methodology entails the comprehensive consideration 
of as much traits as possible and the assumption 
of their taxonomic equivalence. The latter is both 
an advantage and a signifi cant disadvantage of any 
numerical classifi cation. Nevertheless, this approach 
is widely employed across a range of biological 
research areas (Sokal, Sneath, 1963: 4; Cartmill, 2018; 
Hugenholtz et al., 2021).

The search for ways of objective numerical 
classifi cation of human populations was fi rst provided 
in the works of E.M. Tschepourkowsky (1905), and was 
also developed by foreign authors (Morant, 1928; Woo, 
Morant, 1932; Howells, 1973: 149–155; 1990: 71–79; 
Hanihara, 1996, 2000). In Russian anthropology, 
V.V. Bunak (1922) developed a numerical classifi cation 
based on craniofacial features. His proposal was the use 
of three main diameters of the cerebral part of skull. 
Further work in this direction continued, involving 
new statistical methods (Alekseev, Trubnikova, 
1984: 1–8, 115–116; Pestryakov, Grigoryeva, 2013). 
However, the problems of determining the taxonomic 
signifi cance of different skull sizes, searching for new 
traits, and applying various mathematical approaches 
to solving this issue has not lost its relevance yet.

In order to construct a numerical classification 
according to skull size, correlation methods are mainly 
used, integrating the features into more complex 
structures (Alekseev, Trubnikova, 1984: 1–8, 115–116; 
Howells, 1990: 71–79). At the same time, there are few 
non-correlative methods in anthropology. Thus, the 
question of their applicability to the construction of 
anthropological classifi cations and the comparison of 
the results obtained by different methods is important.

In the present work, we use decision trees, also 
known as classifiers or regression trees (Breiman 
et al., 1984: 17; Quinlan, 1986). These names are 
synonymous; their use depends on the problem to be 
solved, since decision trees can be used either to classify 
objects or to construct regressions. Unlike canonical 
discriminant analysis, decision tree algorithm is not 
correlative. At the same time, unlike cluster analysis or 
multidimensional scaling, its mathematical apparatus 
does not involve the calculation of distances between 
objects. The possibility of using variables of different 
types (quantitative and categorical) in one set is also a 
peculiarity of the algorithm. The method’s results are 
simple and clear.

In general, a tree represents branches, which are 
dichotomously separated at a certain point (node). 

Leaves are the fi nal elements of branching. This means 
that branches will never merge, but will be divided into 
smaller and smaller sub-sets. This will produce a graph 
showing a multi-nodal classifi cation tree and the fi nal 
results from the classifi cation, the leaves.

In every step of the analytical process, we can 
assess the discriminatory power of each dimension and 
the composition of the resulting linkages. It is clear 
that the highest differentiation occurs at the base of the 
tree. This allows us to understand the morphological 
similarity of the groups and to identify the features that 
make them similar. In addition, the marginal values of 
these features are also refl ected. This method and the 
“random forest” algorithm generalizing it are widely 
used in various biological and medical studies (Wong 
et al., 2004; Djuris J., Ibric, Djuric Z., 2013; Feldman, 
2020; Al Mamun, Keikhosrokiani, 2022).

Material and methods

The mathematical approach used in the classifi cation 
tree algorithm is based on the stepwise splitting of 
samples with the maximum reduction of the measure 
of their heterogeneity. In other words, the probability 
of combining samples of different types is reduced. 
The splitting (branching) is carried out until there are 
no more objects of the same type left in the leaf of the 
tree. Thus, the criterion of sample heterogeneity at 
each point determines the need for further splitting. 
Therefore, the entropy and Gini indices are used. In 
this research, the former was chosen. 

Shannon entropy calculation formula:

,

where k is the number of types; pk is the probability 
that an object belongs to type k.

The fi rst branching is done on the features that 
distinguish the largest number of samples, the second 
step separates two group associations, and so on until 
homogeneous sets of samples remain. As a result, it is 
possible to get an idea of which of the features used are 
the most important for differentiating certain objects. 
Separation is based on the discreteness of the mean 
variation series.

The decision tree algorithm forms part of a 
broader methodological approach, known as random 
forest. Its fundamental principle is the construction 
of classification or predictive trees. The random 
forest algorithm is predicated on the preliminary 
stage of machine learning, whereby training and test 
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samples are constructed. Notably, there are certain 
limitations to the construction of a single tree; there 
is no guarantee that the algorithm has chosen the 
optimal path. However, this method is suitable for 
differentiating groups based on the average values of 
traits. In this case, the predictive value of classifi cation 
is not the key consideration, and the result obtained is 
clear and easily interpretable. The classifi cation tree 
algorithm was implemented using the scikit-learn 
library in Python (Pedregosa et al., 2011).

There are several differentiation parameters 
(Fig. 1) at each node (leaf) of the tree:

1) the absolute value of the feature that separates 
the two populations at a given level; the groups located 
to the left of the node in the fi gure have a lower value, 
those to the right of the node have a higher value;

2) the value of the Shannon entropy (H) for the 
samples divided at a given level;

3) the number of groups (y) constituting the 
populations at this level of segregation (samples = 
= n (y));

4) the number of samples in each class—the 
regional group we formed (value = [n1, n2, n3, … nk]);

5) the dominant class at this stage of differentiation, 
i.e. the one with the most groups (class = macro-
regional group).

Fifteen craniometric traits according to the 
standard methodology (Martin, 1928: 625–660; 
Alekseev, Debets, 1964: 52–74) were used in this 
work (designated according to the numbering in 
R. Martin’s program): cranial length (M.1), cranial 
breadth (M.8), cranial height (M.17), skull base 
length (M.5), minimum frontal breadth (M.9), frontal 
arc (M.26), parietal arc (M.27), occipital arc (M.28), 
bizygomatic breadth (M.45), midfacial breadth 
(M.46), facial length (M.40), upper facial height 
(M.48), nasal height (M.55), nasal breadth (M.54), 
orbital height (M.52).

The mean values for 39 ethno-territorial groups 
from 13 macro-regions of the Old World were used for 

the construction of the classifi cation (see Table). The 
data were taken from literature sources. Some of the 
skulls from collections of the Research Institute and 
Museum of Anthropology (Moscow State University) 
and the Peter the Great Museum of Anthropology and 
Ethnography were measured by one of the authors. 
Only male skulls were included.

Results

In the initial stage of analysis, differentiation is 
based on bizygomatic breadth (M.45) (Fig. 1), which 
represents a linear dimension. The samples from 
Middle East, North and Central Asia, in addition to 
the Ainu and Khanty populations, exhibited higher 
values for this trait, exceeding 136.74 mm. A total of 
12 samples were grouped together and designated as 
the “North Asia” category at this stage. The samples 
from Southeast, South, and East Asia, Europe, 
Africa, Melanesia, and Polynesia are characterized 
by narrower faces; this mixed group is named in 
accordance with the most numerous, “Southeast Asia”. 
The sample set consists of 27 samples.

Let us consider further differentiation within a 
subgroup characterized by a broader face (Fig. 2). The 
subsequent differentiation is based on the facial length 
(M.40). Four subgroups with smaller values of this 
trait (the class “Central Asia” plus one subgroup from 
Middle East) are distinguished from the remaining 
eight subgroups forming the class “North Asia”. The 
latter also encompasses the Khanty of Western Siberia 
and the Ainu.

The zero value of the entropy index for the 
class “Central Asia” is reached at the subsequent 
step; however, to divide the class “North Asia” into 
homogeneous groups, three additional steps were 
required, in which the values of traits M.52 (orbital 
height), M.28 (occipital arc), and M.9 (minimum 
frontal breadth) were used. As a result, we obtained 

Fig. 1. The initial stage of the analysis (differentiating by linear measurements). 
The initial set of 39 groups was designated “Southeast Asia” owing to the fact that these samples constituted the majority. 

The content of each node is described in the text.
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tree leaves—homogeneous classes, comprising 
samples from a single macroregion: “Central Asia” 
(three samples), “Western Siberia” (one sample), 
“Ainu”, and “North Asia” (fi ve samples). The Kazakh 

and Kyrgyz samples, which were initially assigned to 
the “Middle East” region, were subsequently divided 
into two distinct clusters. Interestingly, at the fi nal 
stage of analysis, both samples diverged from those 

Groups analyzed and their origin

№ n Group Reference Region

1 11 Teita (Kitson, 1931) East Africa

2 39 Tigre (Sergi, 1912)

3 88 Cameroon (Drontschilow, 1913) Central Africa

4 24 Basques (Morant, 1929) Europe

5 10 Bulgarians Data by O.A. Fedorchuk

6 14 Italians      ʺ

7 63 Armenians (Bunak, 1927)

8 9 Irani Data by O.A. Fedorchuk

9 15 Latvians      ʺ

10 56 Ossetians      ʺ

11 11 Chukchi      ʺ North Asia

12 18 Eskimos of Chukotka      ʺ

13 11 Aleuts      ʺ

14 93 Eskimos of Alaska (Debets, 1986)

15 11 Yakuts Data by O.A. Fedorchuk

16 109 Kazakhs (Ismagulov, 1970) Middle East 

17 9 Kirghiz Data by O.A. Fedorchuk

18 61 Khanty      ʺ Western Siberia

19 26 Telengits      ʺ Central Asia

20 154 Buryats Archival data by N.N. Mamonova 
(provided by D.V. Pezhemsky)

21 17 Mongols Data by O.A. Fedorchuk

22 7 Ainu      ʺ Far East

23 36 Nepalese (Morant, 1924) East Asia

24 32 Tibetans (Ibid.)

25 22 Aeta (Bonin, 1931a) Southeast Asia

26 19 Bantam (Ibid.)

27 25 Jakarta      ʺ

28 28 Dayaks      ʺ

29 14 Madura      ʺ

30 28 Javanese      ʺ

31 15 Tagalogs      ʺ

32 32 Central Java (pooled)      ʺ

33 44 Burmese (Tildesley, 1921)

34 15 Andamans (Bonin, 1931a) South Asia

35 35 Tamils (Harrower, 1924)

36 49 New Britain (Bonin, 1936) Melanesia

37 72 North New Guinea (Hambly, 1940)

38 25 South New Guinea (Ibid.)

39 24 Easter Island (Bonin, 1931b) Polynesia

               Note. Macro-regional groups are formed on the basis of geographical criteria only.
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Fig. 2. The tree branch for groups with a large zygomatic diameter, after the fi rst dichotomy (illustrated in gray 
to indicate the prevalence of groups from a specifi c macro-regional group within a node or leaf). 

Fig. 3. Distribution of groups with a smaller

considered “similar” due to a larger frontal breadth 
(M.9). The differentiation of Middle East samples 
into distinct branches is attributed to variations in the 
facial length. 

Following the initial dichotomy, additional groups 
exhibited increasingly narrower faces and greater 

entropy. This indicated a higher level of differentiation, 
necessitating more complex steps for classifi cation 
(Fig. 3). In the second step, the differentiating feature 
for this group is the cranial breadth (M.8). Then, for 
one of the branches, frontal breadth (M.9) proves to 
be a signifi cant differentiating factor. This particular 
trait serves to distinguish the Asian samples from the 
union of European and Central African samples. The 
formation of homogeneous classes at the fi nal stage 
is based on the measurements of height of the facial 
features: M.48 (upper facial height) and M.55 (nasal 
height). The fi nal differentiation of populations of 
different macroregions of the leftmost branch of the 
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tree (Fig. 3) is conducted using a highly similar set 
of traits: facial length (M.40), cranial height (M.17), 
upper facial height (M.48), and minimum frontal 
breadth (M.9).

Discussion

The initial query is to ascertain to what extent the 
differentiation delineated by the decision tree aligns 
with an anthropological classifi cation. The second, 
to identify the specific characteristics that were 
employed as the basis for the division of the total set 
into homogeneous groups. 

The initial branching point along the bizygomatic 
breadth aligns with the prevailing notions regarding 
the importance of this feature for classification 
purposes. Indeed, the majority of North Asian groups 
within the Mongoloid lineage exhibit elevated 
values of facial breadth. Consequently, the initial 
dichotomy is a logical separation of northern and 
southern, more gracile Mongoloid populations. 
The latter are united with other samples exhibiting 
minimal facial breadths—those belonging to the 
African, European, East and South Asian, and 
Oceania groups. This second cluster comprises a 

heterogeneous array of groups. However, its further 
fragmentation results in an increasingly precise 
alignment with the anthropological classification, 
which is an expected outcome given that any system 
considers the distribution areas of populations, too. 
It is of interest to consider the regional associations 
that have diverged along different branches of the 
tree. Two such groups are the Middle East and the 
East Asian (Nepalese, Tibetan). Notably, both cases 
are associated with the differentiation of samples, 
which distribution areas fall within the contact zone 
of different subdivisions of humanity. The Middle East 
groups are of the admixed Southern Siberian lineage, 
while the East Asian groups originate from the region 
at the junction of the territories of distribution of small 
races belonging to the large Mongoloid lineage. 

The traits that give rise to the formation of 
dichotomous divisions are replicated in nodes at 
various levels of the classification hierarchy, thus 
underscoring their inherent importance. The majority 
of these traits are typically employed for the purpose 
of population classifi cation. However, there are certain 
traits whose signifi cance is not immediately apparent, 
such as facial length (M.40) or frontal breadth (M.9).

The results obtained using the decision tree 
algorithm and the widely used multidimensional 

zygomatic diameter, after the fi rst dichotomy.
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scaling method (Fig. 4) will now be compared. In 
this case, a Euclidean distance matrix is used. The 
alienation and stress coeffi cients were found to be 
0.117 and 0.108, respectively.

The configuration of the groups within the 
coordinate system aligns with the classification 
derived from the decision tree method. It is evident 
that a subset of the samples from Middle East, 
North and Central Asia (encircled) exhibits notable 
separation from the remainder. Given the results of 
the classifi cation tree analysis, it may be posited that 
the augmented distance between this cluster and all 
other groups was a consequence of disparities in 
bizygomatic breadth (M.45). The Ainu sample is also 
situated at the periphery of the cluster. Overall, the 
sample’s composition aligns precisely with that of the 
right branch of the classifi cation tree (see Fig. 2).

The second, somewhat informal grouping of 
samples is equally indicative. The composition of this 
subset coincides with the left branch of the decision 
tree (see Fig. 3). Furthermore, the samples from 
Europe, Southeast Asia, and the craniological series 
from East Asia and Central Africa were also identifi ed 
as a distinct subset. The results of the classifi cation 
tree analysis allow us to conclude with a high degree 
of confi dence that this artifi cial population is situated 
on a background of similarity in the cranial breadth 
(M.8). The differentiation of these disparate groups 
can be achieved through the utilization of minimum 
frontal breadth (M.9), a phenomenon that is clearly 
discernible within the decision tree. Furthermore, this 
approach permits the complete separation of these 
groups, whereas in the multidimensional scaling 

plot, two samples from Southern Europe (Irani and 
Armenians) fall within the Southeast Asian cluster.

Finally, at the periphery of the multidimensional 
scaling field, we find the groups that, within the 
classifi cation tree, constituted the leftmost branch and 
unifi ed the samples from Melanesia, Polynesia (Easter 
Island), East Africa, South Asia, and one additional 
sample from East Asia (Nepalese). The positioning 
of these clusters on the graph indicates that, in fact, 
they are quite disparate. For example, the samples 
from the Andamanese and Easter Island aborigines are 
situated at a considerable distance from the primary 
cluster, which is refl ective of their uniquely distinct 
anthropological status.

Conclusions

The differentiation of humanity into discrete categories 
based on the linear measurements of skull size 
alone is inherently constrained by the existence of 
divergent differentiating characteristics across distinct 
geographical regions. It can thus be surmised that an 
attempt to divide a significant sample array using 
a limited set of features may not yield the desired 
result in all instances. Nevertheless, the capabilities 
of the decision tree method have proven suffi cient 
to construct a classifi cation that is consistent with 
classic notions of human differentiation. Notably, this 
method does not allow us to estimate the magnitude 
of distances between individual groups. However, 
it does enable us to identify the features by which 
samples are dichotomized up to the final stage. 

Fig. 4. The differentiation of groups on the basis of 
the results of multidimensional scaling.

1 – Ainu; 2 – Nepalese; 3 – Tibetans; 4 – Taita; 5 – Tigre; 
6 – Basques; 7 – Bulgarians; 8 – Italians; 9 – Armenians; 
10 – Irani; 11 – Latvians; 12 – Ossetians; 13 – New Britain; 
14 – North New Guinea; 15 – South New Guinea; 16 – 
Easter Island; 17 – Chukchi; 18 – Eskimos of Chukotka; 
19 – Aleuts; 20 – Eskimos of Alaska; 21 – Yakuts; 22 – 
Kazakhs; 23 – Kyrgyz; 24 – Khanty; 25 – Telengits; 
26 – Buryats; 27 – Mongols; 28 – Cameroon; 29 – Aeta; 
30 – Bantam; 31 – Jakarta; 32 – Dayaks; 33 – Madura; 
34 – Javanese; 35 – Tagals; 36 – Central Java (pooled); 

37 – Burmese; 38 – Andamanese; 39 – Tamils. 
a – Central Africa; b – East Asia; c – Southeast Asia; d – 
South Asia; e – Europe; f – East Africa; g – Melanesia; h – 
Polynesia; i – North Asia; j – Middle East and Central Asia.

а
b
c
d
e
f
g
h
i
j
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Canonical discriminant analysis can be employed to 
ascertain the directions of intergroup morphological 
variability. However, it belongs to the class of 
correlation methods, which entails restrictions on 
the utilization of initial features and indices based on 
them, as well as categorical features, across a single 
set. A key advantage of classifi cation trees is that they 
permit the analysis of data comprising both categorical 
features and indices. In conclusion, the toolkit of 
anthropological classification techniques has been 
expanded to include a further method that facilitates 
the acquisition of novel data and the use of disparate 
sets of features. Therefore, the decision tree algorithm 
should be proposed as an independent method of 
systematic classifi cation at the intraspecifi c level.
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