Peculiarities of Using 2D Electrical Resistivity Tomography in Caves
https://doi.org/10.17746/1563-0110.2020.48.4.067-074
Abstract
The efficiency of archaeological studies inside caves could be greatly enhanced by geophysical methods because of their potential for examining deposit structure and features. Application of those methods in caves entails a number of problems caused by limited space for measurements and the complexity of the surrounding medium s structure as compared to above-ground measurements. In 2017, Selungur Cave in the Fergana Valley, Kyrgyzstan, was examined using electrical resistivity tomography. Because of the above concerns, in the course of the work the question of the reliability of the results arose. To clarify the issue, a numerical experiment was performed to assess the effect of the three-dimensional cave geometry on the results of a two-dimensional inversion. It was found that variations of cave geometry parameters result in unexpected false anomalies, and considerable errors in bedrock location and resistivity can occur. In the case of downward diverging cave walls, an accurate resistivity section can be obtained by using the inversion based on a two-dimensional model. Therefore, electrical resistivity tomography in caves with similar geometry can yield reliable results concerning the shape of bedrock surface, the thickness of sedimentary layers, and size and position of inclusions such as fallen fragments of roof therein.
Keywords
About the Authors
V. V. OlenchenkoRussian Federation
Associate Professor, NSU; Leading Researcher, TIPGG.
Pirogova 1, Novosibirsk, 630090; Pr. Akademika Koptyuga 3, Novosibirsk, 630090
L. V. Tsibizov
Russian Federation
Researcher
Pirogova 1, Novosibirsk, 630090; Pr. Akademika Koptyuga 3, Novosibirsk, 630090; Molodezhnaya 3, Moscow, 119296
P. S. Osipova
Russian Federation
Doctoral Student, NSU; Junior Researcher TIPGG.
Pirogova 1, Novosibirsk, 630090; Pr. Akademika Koptyuga 3, Novosibirsk, 630090
T. T. Chargynov
Kyrgyzstan
Associate Professor
Frunze 547, Bishkek, 720033
B. T. Viola
Canada
Assistant Professor
27 King’s College Circle Toronto, Ontario M5S 1A1
K. A. Kolobova
Russian Federation
Leading Researcher
Pr. Akademika Lavrentieva 17, Novosibirsk, 630090
A. I. Krivoshapkin
Russian Federation
Director, IAE; Department Chair, NSU.
Pirogova 1, Novosibirsk, 630090; Pr. Akademika Lavrentieva 17, Novosibirsk, 630090
References
1. Campana S., Piro S. 2008 Seeing the Unseen: Geophysics and Landscape Archaeology. London: CRC Press.
2. Cardarelli E., Cercato M., Cerreto A., Di Filippo G. 2010 Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophysical Prospecting, vol. 58: 685-695.
3. El-Qady G., Metwaly M., Drahor M.G. 2019 Geophysical techniques applied in archaeology. In Archaeogeophysics: State of the Art and Case Studies. Cham: Springer, pp. 1-25.
4. Kolobova K.A., Flas D., Krivoshapkin A.I., Pavlenok K.K., Vandenberghe D., De Dapper M. 2018 Reassessment of the Lower Paleolithic (Acheulean) presence in the western Tien Shan. Archaeological and Anthropological Sciences, vol. 10: 615-630.
5. Krivoshapkin A., Viola B., Chargynov T., Krajcarz M.T., Krajcarz M., Fedorowicz S., Shnaider S., Kolobova K. 2018 Middle Paleolithic variability in Central Asia: Lithic assemblage of Sel’ungur Cave. Quaternary International, vol. 535: 88-103.
6. Leucci G., De Giorgi L. 2005 Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance. Natural Hazards and Earth System Science, vol. 5: 17-22.
7. Loke M.H. 2002 RES2DINV ver. 3.50. Rapid 2-D resistivity and IP inversion using the least-squares method. URL: https://moodle.polymtl.ca/pluginfile.php/419838/mod_resource/content/0/MANUELRES2Dinv.pdf
8. Loke M.H. 2007 Res3Dinv Software, Version 2.14. Geoelectrical imaging 2D&3D, Pinang. URL: http://personales.upv.es/jpadin/coursenotes.pdf
9. Martinez-Moreno F.J., Pedrera A., Ruano P., Galindo-Zaldivar J., Martos-Rosillo S., Gonzalez-Castillo L., Sanchez-Ubeda J.P., Marin-Lechado C. 2013 Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: Algaidilla Cave (southern Spain). Engineering Geology, vol. 162: 67-78.
10. Obradovic M., Zeid N.A., Bignardi S., Bolognesi M., Peresani M., Russo P., Santarato G. 2015 High resolution geophysical and topographical surveys for the characterisation of Fumane Cave prehistoric site, Italy. Near Surface Geoscience 2015. 21st European Meeting of Environmental and Engineering Geophysics, vol. 1: 1-5.
11. Tejero-Andrade A., Argote-Espino D.L., Cifuentes-Nava G., Hernandez-Quintero E., Chavez R.E., Garda-Serrano A. 2018 ‘Illuminating’ the interior of Kukulkan’s Pyramid, Chichen Itza, Mexico, by means of a non-conventional ERT geophysical survey. Journal of Archaeological Science, vol. 90: 1-11.
12. Tsibizov L.V., Krivoshapkin A.I., Osipova P.S., Olenchenko V.V., Grigorevskaya A.V., Viola B., Chargynov T., Kolobova K.A., Shnaider S.V. 2017 Aprobatsiya kompleksa geofizicheskikh metodov v peshchere Selungur (Kyrgyzstan). Teoriya i praktika arkheologicheskikh issledovaniy, No. 4: 169-177.
13. Tsokas G.N., Tsourlos P.I., Vargemezis G., Novack M. 2008 Non-destructive electrical resistivity tomography for indoor investigation: The case of Kapnikarea Church in Athens. Archaeological Prospection, vol. 15: 47-61.
14. Witten A. 2017 Handbook of Geophysics and Archaeology. New York: Routledge.
Review
For citations:
Olenchenko V.V., Tsibizov L.V., Osipova P.S., Chargynov T.T., Viola B.T., Kolobova K.A., Krivoshapkin A.I. Peculiarities of Using 2D Electrical Resistivity Tomography in Caves. Archaeology, Ethnology & Anthropology of Eurasia. 2020;48(4):67-74. https://doi.org/10.17746/1563-0110.2020.48.4.067-074